Other livestock manure nitrous oxide emissions

[/business/agriculture/livestock/manure/n2o/other]

Domestic livestock methodology, manure management and storage. Calculates nitrous oxide emissions (N2O and CO2e) based on total liveweight. Scenarios include camels, goats, horses, mules and asses, and sheep. Globally applicable.

Summary

This methodology represents nitrous oxide (N2O) emissions associated with the management and storage of 'other' livestock manure - specifcally camels, goats, horses, mules and asses, and sheep. The data and calculation methodology is sourced from the IPCC, as published in Volume 4, Chapter 10 - Emissions from Livestock and Manure Management and Volume 4, Chapter 11 - N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application of their 2006 IPCC Guidelines for National Greenhouse Gas Inventories.


The methodology

Emissions model

Nitrogen (N) found within the excretions of livestock manure contributes to N2O emissions both directly and indirectly. Direct emissions arise from the processes of nitrification and denitrification. Nitrification is the transformation of N-containing compounds (ammonia (NH3) => nitrite (NO2-) => nitrate (NO3-)) which occurs under aerobic conditions (i.e. in the presence of oxygen). Denitrification is the subsequent transformation to N2O which occurs only under anaerobic conditions. As such, direct N2O emissions require both aerobic and anaerobic conditions in succession. Indirect emissions result from the vaporization of N-containing compounds (primarily NH3 and mono-nitrogen oxides, NOx) as well as through runoff and leaching into soils. Indirect emissions depend primarily on time.

This emissions methodology is based upon factors which describe both the direct and indirect pathways of manure-N (i.e. manure-associated nitrogen). Direct emissions are based upon the typical daily rates at which manure-N is produced by livestock, and the rates at which this N is converted directly into N2O-N (i.e. nitrous oxide-associated nitrogen). Indirect emissions are based upon the typical fractions of excreted N which are volatilised and the rates at which this volatilised N is converted into N2O-N.

Quantities of N2O-N are then converted into N2O emission quantities on the basis of their relative molecular masses.

Annual emission rates (e.g. kg / year) for a population or sub-population of livestock are calculated by multiplying the unit liveweight emissions rates by the total liveweight of the livestock population which is under consideration.

This methodology represents the IPCC Tier 1 approach.

Model data

The rate at which N2O is emitted ultimately depends on the nitrogen (N) and carbon (C) content of manure, and the duration of storage and type of treatment. As such, emissions factors for a broad range of scenarios are provided within this methodology. A total of 544 specific scenarios are represented, differentiated by geographic region (e.g., North America, Middle East), livestock type (e.g., camel, goat, sheep), manure management type (e.g. composting, aerobic treatment) and subtype (e.g. static pile, forced aeration).

Each scenario is represented by several data values, including the daily N excretion rates, direct and indirect N to N2O-N conversion factors, and the fraction of manure-N typically volatilised. In addition, this methodology uses two general constants for deriving emissions quantities from N2O-N:

  • molecular mass ratio of N2O and N: the factor for converting a N2O-N quantity into N2O (44/28)
  • global warming potential of N2O: the factor for converting a N2O emissions quantity into CO2e - the quantity of CO2 which would exert the same atmospheric warming effect.

Activity data required

N2O emissions are directly proportionate to the total liveweight of the livestock population kept, which must be specified in order to make a calculation.

Calculation and results

This emissions calculated by this methodology represent those attributable to the specified livestock liveweight over a period of 1 year.

The methodology calculates two emissions quantities: (1) the absolute quantity of N2O associated with the livestock population; and (2) N2O emissions expressed in terms of CO2e.


Additional information

Nomenclature

Following IPCC advice, the term manure is used collectively to include both dung and urine (i.e., the solids and the liquids) produced by livestock.

Incomplete data

Data on the fraction of manure N lost through volatilisation is not provided for all combinations of livestock type and manure management practices in the IPCC source documentation. Where possible, CarbonKit returns the sum of both direct and indirect N2O emissions. Otherwise, the returned values represent direct emissions only.


Related methodologies

Analogous methodologies are also available focussing on poultry, cattle and swine and fur-bearing livestock N2O emissions associated with manure management.

 UIDLabel
K05JIWKOND9I africa, camel, aerobic treatment, forced aeration
GHXV16N5YLNJ africa, camel, aerobic treatment, natural aeration
Z7F88H74I9YY africa, camel, anaerobic digester
7E8P1YZ2F15Q africa, camel, composting, in vessel
KZ84ABBL8PCJ africa, camel, composting, intensive windrow
3V228N8VFXHQ africa, camel, composting, passive windrow
6AA89TBJXAM2 africa, camel, composting, static pile
WMVZ4QIRWNST africa, camel, daily spread
D3J4MANHL6HS africa, camel, deep bedding, active mixing
K3KND8QFFGUC africa, camel, deep bedding, no mixing
NI3M9Y71HKZ9 africa, camel, dry lot
EUKZSJ58OL89 africa, camel, liquid/slurry, with natural crust cover
P8TCLVXKM8U3 africa, camel, liquid/slurry, without natural crust cover
1E02NYUUFW7L africa, camel, pasture/range/paddock
3KQN7J5UJIX5 africa, camel, pit storage below animal confinements
7Q6HZ4Z7NW6N africa, camel, solid storage
NBGD72Q9CFE0 africa, camel, uncovered anaerobic lagoon
52HEZ7HC1EFT africa, goat, aerobic treatment, forced aeration
M6SY60UAKVBR africa, goat, aerobic treatment, natural aeration
3Z5SYTXVBIJ2 africa, goat, anaerobic digester
Log in to perform calculations on this data
Name: Other_livestock_manure_nitrous_oxide_emissions
Full path: /business/agriculture/livestock/manure/n2o/other
Provenance: IPCC